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 Knowledge about the pathways of human evolution has expanded dramatically as a result of 
advances in genetic, paleontological, and archaeological studies in the twentieth century. One 
excellent example is the resolution of the issue of the origin of modern humans, long a source 
of great controversy; namely, the idea that modern  Homo sapiens  are direct related genealogi-
cally to Eurasian archaic humans was rejected, and the “Out of Africa” theory, which is now 
the accepted evolutionary model, was vindicated. However, this new theory only gave rise to a 
fl urry of new questions, one of which centers on the drama of the replacement of the archaic 
Neanderthals by modern  Homo sapiens . 

 Modern humans appeared in Africa about 200,000 years ago; as they subsequently spread 
across Eurasia, they encountered the indigenous Neanderthals. The two populations coexisted 
until 30,000 years ago or perhaps even later, but the Neanderthals eventually went extinct. 
What governed the fates of the two groups? A number of current hypotheses have been pro-
posed to explore the possible mechanics of the replacement of Neanderthals by modern 
humans, and there has been extensive debate as to whether or not the presence of the modern 
humans accelerated the extinction of the Neanderthals. This question is being hotly debated 
among archaeologists, anthropologists, and geneticists around the world. 

 We are actively engaged in a 5-year (2010–2014) major research project entitled 
“Replacement of Neanderthals by Modern Humans: Testing Evolutionary Models of Learning” 
(RNMH). In launching RNMH we have adopted a large scale innovative assault on this 
research question. The RNMH project implements a pioneering framework structured around 
the contrast between the success of modern human societies in solving strategic survival prob-
lems, and the failure of Neanderthal societies to do so. In that context, we attribute the contrast-
ing fates of the two societies to a difference in learning abilities between the two populations. 
This is the basis of our working hypothesis (“learning hypothesis”). 

 The specifi c goal of this project is to verify the learning hypothesis within an interdisciplin-
ary research framework incorporating new perspectives and methods in the fi elds of archaeol-
ogy, paleoanthropology, cultural anthropology, population biology, earth sciences, 
developmental psychology, biomechanics, and neuroscience. The two present volumes are the 
proceedings of the fi rst international RNMH conference held in Tokyo in November 2012. 
Some results have already been published separately in various scholarly journals, but these 
two volumes constitute the fi rst full attempt to disseminate the fi ndings of our RNMH project 
to the international research communities. A major purpose in doing so at this halfway point 
of our project is to solicit scholarly evaluation of these fi ndings. 

 The 43 submitted manuscripts have been classifi ed into seven sections based on content, 
and then divided into two groups to be published as two volumes in the Replacement of 
Neanderthals by Modern Humans series. The fi rst volume is devoted to discussion of cultural 
perspectives, the second to cognitive and physical perspectives. We hope that these two vol-
umes may contribute signifi cant new insights on the process of replacement and on interac-
tions between Neanderthals and modern humans, and hence on the origins of prehistoric 
modern cultures. 

 The editors of this volume are greatly indebted to all our colleagues who supported the 
publication with their reviews and comments: Juko Ando (Keio University), Emiliano Bruner 
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(Centro National de Investigación Sobre la Evolución Humana), Nicole Creanza (Stanford 
University), Laurel Fogarty (Stanford University), Kaoru Imamura (Nagoya Gakuin 
University), Hiroaki Kawamichi (National Institute for Physiological Sciences), Ryosuke 
Kimura (University of the Ryukyus), Tasuku Kimura (University of Tokyo), Yasushi Kobayashi 
(National Defense Medical College ), Takanori Kochiyama (Kyoto University), Osamu Kondo 
(University of Tokyo), Tadashi Koyama (Kobe Gakuin University), Naoko Matsumoto 
(Okayama University), Alex Mesoudi (Durham University), Takashi Michikawa (University 
of Tokyo), Naoki Miura (Tohoku Institute of Technology ), Masaaki Mochimaru (National 
Institute of Advanced Industrial Science and Technology), Masaki Moriguchi (Chuo 
University), Yoshihiro Nishiaki (University of Tokyo), Ryutaro Ohtsuka (Japan Wildlife 
Research Center), Hiroki Oota (Kitazato University), Herman Pontzer (Hunter College), 
Makoto Shimada (Fujita Health University), Dietrich Stout (Emory University), Nobuyuki 
Takahashi (Hokkaido University), Kyoko Yamaguchi (University of the Ryukyus), Eiko 
Yamagami (Kobe Gakuin University), Taro Yamauchi (Hokkaido University), Kazufumi 
Yoshihara (Kyushu University). These colleagues read the manuscripts and made critical but 
constructive comments on the early drafts; this valuable input greatly improved the quality of 
the volumes. Many thanks to all of them. 

 We are pleased to acknowledge the Japanese Ministry of Education, Culture, Science, and 
Technology for their interest in our project and for their fi nancial support, which has made 
possible our RNMH Project, the conference, and the preparation of this volume. 

 We would like to thank Ken Kimlicka and Taeko Sato of Springer Japan for heir most valu-
able guidance and support, and for their tireless encouragement during the preparation of this 
volume. 
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        The “Replacement of Neanderthals by Modern Humans” 
(RNMH) project aims to validate the working hypothesis, or 
“learning hypothesis,” that seeks to explain the replacement of 
Neanderthals ( Homo neanderthalensis ) by early modern 
humans ( H. sapiens ). The RNMH project focuses on 
 evidence—such as innate differences in learning capacity 
between the two populations—within an interdisciplinary 
research framework that incorporates new perspectives and 
methods from the humanities and biological sciences, includ-
ing neuroscience and engineering. This volume, the second of 
a two-volume book, is the result of papers presented at the fi rst 
international conference of the RNMH project, held in Tokyo 
in November 2012. The fi rst volume covers cultural perspec-
tives addressing the process of the replacement of Neanderthals 
and learning strategies based on changing patterns in archaeo-
logical evidence and theoretical interpretation using mathe-
matical models. The second volume deals with cognitive and 

physical perspectives on the replacement process, exploring 
the innate differences in learning and cognitive abilities that 
may have existed between Neanderthals and early modern 
humans. The editors of the second volume have selected a 
total of 26 contributed papers, divided into four parts accord-
ing to research topic. 

 The fi rst part is devoted to cognitive and psychological 
perspectives on the learning hypothesis. Here, the authors 
work to clarify which cognitive and psychological functions 
helped shape the fate of the two species. Mithen (Chap.   2    ) 
reviews the similarities and differences in cognition of 
Neanderthals and early modern humans and discusses the 
possible differences in cognitive ability between them, offer-
ing examples such as the use of pigment. The next two chap-
ters deal with learning style and ability in modern humans. 
Ando (Chap.   3    ) introduces three learning types, individual, 
imitative and instructed, and discusses the differences in 
their characteristics based on original experiments. Omura 
(Chap.   4    ) considers the evolutionary basis for theories on 
learning ability in modern humans, modifying the cumula-
tive cultural evolution hypothesis proposed by Tomasello, 
and proposes that the most important ability for cumulative 
cultural learning is the ability to objectify and manipulate the 
relationships between culture and the environment. The sub-
sequent two chapters report fi eld research conducted with 
children. It is important to understand the basic learning 
characteristics required for modern humans to survive as 
innovative hunter-gatherers. In particular, it is critical to 
focus on the learning behaviors seen in children and chil-
dren’s play groups, since childhood is the most active period 
for learning, and because play groups served as the primary 
learning place for children until the introduction of modern 
school education. Koyama (Chap.   5    ) and Yamagami (Chap.   6    ) 
joined Baka society in Cameroon and performed experiments 
with Baka children. They found evidence of cognitive fl exibil-
ity as demonstrated by object-making and drawings, which 
might be important in the construction of a fl exible learning 
attitude in modern humans. The last two chapters of the fi rst 
part of this volume offer experimental psychological evidence. 

      Introduction 

              Naomichi     Ogihara     ,     Hiroki     C.     Tanabe     ,     Hideaki     Terashima     , 
and     Takeru     Akazawa    
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Evolutional mathematical models assume that there are two 
types of learning process: individual learning (i.e., learning 
by oneself, by trial-and-error) and social learning (i.e., learn-
ing from others, by imitation). However, from a cognitive 
psychology viewpoint, this dichotomy might be misleading 
or inadequate, because there are more cognitive factors oper-
ating in the learning situation. Takahashi et al. (Chap.   7    ) 
claim that individual learning has two different components: 
trial-and-error and creativity. They clarify the relationship 
between the abilities of imitation, trial-and- error, and cre-
ativity from an experimental psychology point of view. 
Mesoudi (Chap.   8    ) investigates social and individual learn-
ing behavior in an archaeological context, examining how 
contemporary humans behaved when faced with a relatively 
complex and novel technology design task and elucidating 
their adaptive performance under constraint. 

 The second part of this volume deals with biology and 
genetics as related to the replacement of Neanderthals by 
modern humans. Hoshino et al. (Chap.   9    ) present a prelimi-
nary analysis of the three-dimensional kinematics of knap-
ping motion in stone tool-making. Such replication studies 
are important for identifying the motor skills required for 
recurrent Levallois techniques, as well as possible differences 
in learning ability between Neanderthals and early modern 
humans. Hagino and Yamauchi (Chap.   10    ) and Yamauchi and 
Hagino (Chap.   11    ) report the results of fi eld studies on Baka 
hunter-gatherers. In Chap.   10     the authors quantify the daily 
physical activities and time-space of hunter-gatherers’ chil-
dren, and in Chap.   11     they compare the growth patterns of 
hunter-gatherer children with those of populations in other 
parts of the world. These studies provide a solid biological 
basis for understanding and characterizing learning behavior 
in hunter-gatherer societies, allowing extrapolation to poten-
tial differences in learning ability between Neanderthals and 
early modern humans. In the last paper in the second part of 
this volume, Kimura (Chap.   12    ) discusses statistical analyses 
of population genomics. Reconstructing modern human 
population dispersal is crucial for understanding the replace-
ment of Neanderthals by early modern humans, and Kimura’s 
computer simulation study represents a step towards better 
interpretation of results obtained by genetic analyses for the 
reconstruction of the complex demographic history of modern 
human populations. 

 The third part of this volume contains studies on the com-
puterized reconstruction of fossil crania and brain morphol-
ogy, which is expected to facilitate empirical validation of 
the learning hypothesis by providing anatomical proof of dif-
ferences in learning ability between Neanderthals and early 
modern humans. Bruner (Chap.   13    ) reviews recent advances 
in functional craniology in Neanderthals and demonstrates 
that Neanderthals generally display a plesiomorphic organi-
zation of the braincase. Bruner hypothesizes that a morpho-
genetic limit (caused by geometric and structural constraints 
between the endocranial soft and hard tissues) and a thermal 

limit (rooted in the plesiomorphic vascular system) led to 
differences in cranial morphology between Neanderthals and 
early modern humans. Kobayashi et al. (Chaps.   14     and   15    ) 
present their attempts to establish a connection between cra-
nial and brain morphology in extant macaques. In Chap.   14    , 
they report that endocasts of macaque skulls show marked 
impressions of the cerebral sulci and gyri through the entire 
surface, indicating that the extent of major subdivisions of 
the macaque cerebral cortex can be determined from endo-
casts. In Chap.   15    , the authors present their results on the 
morphological correspondence between the location of 
sutures and the location of major sulci. These studies provide 
important data for the estimation of brain morphology based 
on fossil crania. 

 The next four papers in the third part of the volume focus on 
geometric morphometrics for the digital reconstruction of fos-
sil crania. Geometric morphometrics is a quantitative approach 
used to analyze shape variations based on landmark coordi-
nates. However, the human cranial vault has few defi nable 
landmarks, and semi-landmarks must be introduced for quanti-
fi cation of the overall shape of the cranial vault. Using the mod-
ern Japanese population as an example, Ogihara et al. (Chap. 
  16    ) evaluate how two types of semi- landmark confi gurations 
affect the analysis of morphological variability in neurocranial 
shape, concluding that the results do not seem to be signifi -
cantly affected by the choice of landmark confi guration, pro-
vided that a suffi cient number of semi-landmarks are evenly 
distributed across the neurocranial surface. Morita et al. (Chap. 
  17    ) also focus on the modern Japanese population, analyzing 
the detailed morphological variability of cranial shape using 
geometric morphometrics. The results presented by Morita 
et al. serve as a reference database of human cranial morphol-
ogy for computerized reconstruction of fossil crania, such as 
the assembly of fossil cranial fragments and the interpolation 
of missing parts in fossil crania. Using this cranial database, 
Amano et al. (Chap.   18    ) propose a method for mathematically 
interpolating missing parts of crania, and discuss the usefulness 
and limitations of the proposed interpolation method for the 
reconstruction of fossil crania. In the above three studies, semi-
landmarks were placed by sliding a “template” landmark con-
fi guration along the cranium in order to minimize spatial 
bending energy. However, Moriguchi et al. (Chap.   19    ) proposes 
a new approach to the transfer of semi-landmarks based on the 
minimization of bending energy on the surface. 

 The fi nal three chapters in the third part of this volume 
deal with the reconstruction of fossil crania and brain mor-
phology. Suzuki et al. (Chap.   20    ) propose an automatic CT 
segmentation method using structural analysis for the disas-
sembly of fragments of an assembled fossil cranium in order 
to permit reassembly of the fragments. The proposed method 
would be a valuable tool for the digital reassembly of fossil 
materials. Kondo et al. (Chap.   21    ) present a semi-virtual 
method for the reconstruction of the endocast of Qafzeh 9, a 
representative early modern human fossil, using CT images, 

N. Ogihara et al.
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and discuss possible asymmetries found in the cranial 
 morphology. Lastly, Kochiyama et al. (Chap.   22    ) propose a 
framework for a computerized method of digitally recon-
structing Neanderthal brain morphology. Specifi cally, map-
ping from a human cranium to a fossil cranium was defi ned 
by means of a spatial deformation function using computa-
tional anatomy methodology, and this function was then 
applied to the estimation of the shape of the brain inside the 
fossil cranium. Although this method has methodological 
limitations that have yet to be resolved, the proposed frame-
work is promising for application to the mathematical recon-
struction of fossil brain morphology. 

 The fourth and fi nal part of this volume is devoted to neu-
roscience. The authors adopt cognitive neuroscientifi c and 
computational neuroanatomical approaches to search for 
weaknesses in the learning hypothesis. By assuming that 
morphological changes in fossil skulls refl ect functional dif-
ferences between the brains of modern humans and those of 
Neanderthals, the authors seek out possible gaps in learning 
abilities based on differences in brain morphology and 
region-specifi c activities. Tanabe et al. (Chap.   23    ) introduce 
a scheme for comparing the Neanderthal brain to the modern 
human brain using computational neuroanatomy and func-
tional neuroimaging techniques, and illustrate their attempt 
to elucidate the difference between the two species. As an 
example of this approach, Kubo et al. (Chap.   24    ) show the 
correlation between the cerebellar and posterior cranial fossa 
volumes using structural magnetic resonance imaging data, 
and attempt to develop a method for estimating the cerebellar 
volume of fossil hominins. 

 Tanabe et al. (Chap.   23    ) also clarify which brain functions 
relate to learning ability under focus. The authors assume 
that the formation of innovative activities is strongly corre-
lated with two components of cognitive ability: the intrinsic 
drive (internal motivation and perspective) to produce cre-
ative activity, and the social cognitive ability to make predic-
tions about the actions and intentions of others on the basis 
of their mental states. Early modern humans might have been 
superior to Neanderthals in these abilities and this difference 
may have determined the fates of both species. Based on this 
hypothesis, Tanabe et al. attempt to identify functional brain 
maps related to social cognition and motivation, and clarify 
the neural mechanisms of eye contact and joint attention, 
which are both markers of social cognitive ability during 
early development in humans. Kawamichi et al. (Chap.   25    ) 
examine the neural correlates of sense of acceptance, which 
is thought to be one of the key factors for maintaining an 
innovative society. Miura et al. (Chap.   26    ) identify the neural 
substrates of imitative learning of stone tool-making actions, 
and Mizuno (Chap.   27    ) examines the neural substrates asso-
ciated with motivation to learn. These studies contribute to 
the creation of maps of specifi c brain functions. Using this 
input, it is possible to examine the differences in learning 
abilities between Neanderthals and early modern humans by 
integrating morphological analyses of fossilized brains with 
functional mapping of the modern human brain. 

 We hope this edited volume will promote further integra-
tion of different disciplines and enrich ongoing discussions 
to promote better understanding of the dynamics of learning 
in the replacement of Neanderthals by early modern humans.   
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